
shows the skin friction distribution along the wall and Fig. 3 shows the growth of the velo- 
city profile along the generatrix of the cone (a-d correspond to ~ = 0, 10 -2 , 1.2.10 -2, and 
3.10-2). The absorption takes place very rapidly by the length scale L. In conclusion, it 
is worth noting that, in the general case, the displacement process will be accompanied by 
chemical reactions and, strictly speaking, the entire analysis given above is valid only 
when the Lewis number Le = i. 
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UNSTEADY MOTION OF A CIRCULAR CYLINDER IN A TWO-LAYER LIQUID 

V. I. Bukreev, A. V. Gusev, and I. V. Sturova UDC 523.593 

We have performed a theoretical and experimental study of plane internal waves generated 
on the interface in a two-layer liquid by the unsteady translational motion of a submerged 
circular cylinder. At the present time wave formaton by such motion of a two-dimensional 
body has been analyzed theoretically only for the special case of a homogeneous liquid [i], 
and experimental research has been devoted mainly to the study of steady motion [2, 3]. 

We consider the linear formulation of the two-dimensional problem of wave flows gener- 
ated by a dipole with a time-dependent moment moving in the upper layer of a two-layer liquid. 
We assume that, as in an infinite homogeneous liquid, this is equivalent to the motion of a 
circular cylinder of radius R with the velocity U(t) [the dipole moment m(t) = 2~R2U(t), and 
coincides with the direction oflmotion of the cylinder]. We assume that the liquid is in- 
viscid and incompressible, and consists of two layers of different densities: p1(0 < y < HI) 
and P2 = p1(l + s), c > O(--H2 < y < 0). The y axis is directed vertically upward, and the 
horizontal x axis lies in the undisturbed interface. We assume that at time t = 0 a dipole 
with the variable moment m(t)[m(t) ~ 0 for t < O] with its axis in the positive direction 
of the x axis begins to act in the upper layer of liquid at the point x = O, y = h, so that 
its trajectory has the form x = c(t), y = h. 

We assume potential flow in each layer, and that the equations of motion have the form 

0 5 (x - -  c (t)) ~ .  5 (y - -  h) A v n  = - -  ? n m  ( t )  -dTx 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

v~ = 0 at g = H1, 

v~=v~, p ~ \ ~ - g - 5 7 / j ~ = o  ~t y=o, 
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V2 = 0 at J = - - H 2 ,  t~ n + 0 at Ix l ~  0o 

and the initial conditions 

v~ =- Ov,~/Ot = 0 at  t - - - -O.  

Here v n is the vertical component of the velocity, g is the acceleration due to gravity, n = 
i, 2 (the subscript 1 refers to the upper layer, and 2 to the lower layer), y, = I, y= = 0. 
The condition of a "solid cover" on the free surface (y = H,) permits filtering out the sur- 
face waves without substantially distorting the waves on the interface, and simplifies the 
solution of the problem somewhat. 

Taking the Fourier transform with respect to x and the Laplace transform with respect 
to t, 

Vn (k, g, s) = S e-~tdt e-~h~v. (x, g, t) dx 
0 - - o o  

for real k and Re s > 0, we obtain for v n the ordinary differential equations 

v 1 = 0  at g = H 1 ,  

-- 2 - !  ~,~ = ~;~, ~ ,~ + g k ~  = (1 + ~) (~ ;~  + g k ~ )  a~ 

v 2 =  0 at g = - - H 2 ,  

p- 0, 

where 

(1 )  

oo 

P (k, s) = ik .( m (0) exp [ - -  (sO + ikc (0))] dO; 
0 

primes denote differentiation with respect to y. 

The study of the behavior of the function n(x, t), which describes the elevation of the 
interface and satisfies the linearized condition 3~/3t = Vly=o , is of particular interest in 
the p~esent problem. From the solution of system (i) we obtain an expression for the func- 
tion n(k, s) -- the double transform of the function n: 

(1 (k, s) :" (~" o, ~) - -  s = s (ch kh --  t h  kHlsh  kh) t h  kH~.P/D,  

where D(s, k) = a(k)s 2 + b(k), a(k) = (I + r tanhkH1+tanhkH2, B(k)= r tanhkH1, tanhkH2. 

Taking the inverse Fourier and Laplace transforms, we obtain 

t i (ch kh --  t h  kH 1 sh  kh) t h  kH2e~t~'~Fdk, ~1 (x, t) = ~ -  
- -oo 

where 

a + i ~  t 

F =  2n'--iit S ~sPeSt'as = Tik ym(O)cos[7(t_O)]e_ikc(o)dO 
O--ioo 0 

by virtue of the fact that a, b > 0, y(k) = r 

The final expression for the function ~ has the form 

i sh  dk It 1 ~- th  kH~ (ca  kh --  t h  kH~ kh) ~ m (0) s in  [k (x - -  c (o))1 ~l (x, t) = ---~ 
0 0 

cos [? (t -- 0)] dO. 
(2) 
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This expression is appreciably simplified for an infinitely deep liquid (HI, H2 -~ ~): 

0o 1 

+ ~) k~-'~dk m (0) ~in [k (x - -  ~ (0))1 r [ l /~ - ( t - -O)  1 dO 
0 0 

(3) 

and is similar to the solution in [i]. 

The integration with respect to 0 in Eqs. (2) and (3) can be performed analytically, in 
particular for motion of the cylinder at the constant velocity Uo for a finite time 0 < t < T. 
In this case, 

re(t) = 2nUoR ~, c(t) = Uo t 

re(t) ~ O, c ( t ) =  GoT 

and the inner integral in (2) takes the form 

where, for 0 < t < T, 

for t > T 

for O < t < T, 

for $ ~  T 

~UoR~(h/(kUo + ~) + f~/(~'Uo + ~)), (4) 

/1=cos [k(x - -  Uot)l--cos (kx + 70, f~ = cos [k(x - -  Uot)] --cos (kx - -  ?t); 

1~ = c o s  [ k ( x  - -  U o r )  - -  ? ( T  - -  t ) ]  - -  c o s  ( l :x  + ? t ) ,  

12 = c o s  [ k ( x  - -  U o T )  + ? ( T  - -  t ) ]  - -  c o s  ( k x  - -  ? t ) .  

To test the validity of the theory presented above for calculating real internal waves, 
we performed experiments in a noncirculating channel 4.82 m long, 0.2 m wide, and 0.6 m deep 
filled with two layers of immiscible liquids: water (density P2 = 1 g/cm 3, thickness of 
layer H2 = 30 cm) and kerosene (Pl = 0.8 g/cm 3, HI = 15 cm). Waves were generated by a cylin- 
der of radius R = 1.03 cm which was towed in the upper layer at a distance h < HI from the 
interface. At time t = 0 the cylinder was located at a distance lo from one end of the chan- 
nel. The law of motion of the cylinder c(t) was recorded by resistance transducers. We con- 
sider the case of unsteady motion with the velocity of the cylinder described by the expres- 
sion 

dc I U o [ l - - e x p ( - - t / t l )  ] for O < t ~ T ,  
U ( t ) = - T F = ( U  o e x p [ - ( t - T ) / t 2 ]  ~r t >  T, 

where Uo, tl, t2, and T are constants. 

Wavemeters,* whose operation is based on the substantial difference between the electri- 
cal conductivities of water and kerosene, were placed at several fixed distances c, to record 
vibrations of the interface. Metrological tests showed that they had a linear static calibra- 
tion characteristic, negligibly small hysteresis, high sensitivity (about 40 mV/mm), and a 
space--time resolving power more than adequate for the tests. The output signals of the wave- 
meters were fed into a recording instrument and also into a specialized HISTOMAT-S computer 
which analyzed the spectrum of the signals. 

In addition to the gravitational waves considered here, capillary waves due to surface 
tension were generated on the interface between the immiscible liquids, but estimates [4] 
showed that the capillary waves were negligibly small under the conditions of our experiments. 

Unfortunately, there is an important inherent difference between the conditions under 
which the experiments were performed and calculations based on the linear theory were made. 
In the calculations the liquids were assumed inviscid, and the layers infinite in the x direc- 
tion, whereas in the experiments the viscosity of kerosene was vl = 0.0162 cm2/sec and that 
of water v2 = 0.0108 cm2/sec, and the channel was of finite length. We discuss below the ef- 
fect of viscosity on the difference between the experimental and calculated values. Because 
of the finite length of the channel, waves were reflected from the ends, and seichelike vibra- 

~The wavemeters were developed by V. V. Zykov and E. I. Khakhilev. 
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tions were generated at large times. This limited the time during which the behavior of 
the dominant modes of vibration of the interface could be studied. 

The experiments were performed for a number of values of the controlling parameters of 
the problem. Here we present only some typical results. The solid lines in Fig. 1 represent 
the traces of vibrations of the interface in time recorded by two transducers located at dis- 
tances c, = 1 m (Fig. la) and c, = 3 m (Fig. ib) from the starting point of the cylinder. 
The values of the other parameters of the problem were identical for these two regimes and 
equal to the following: A = gR/U~ = 2.51, h/R = 6, ~ = 0.25, txUo/R = 3.8, t2Uo/R = 11.4. 
The dimensionless time T = tUo/R counted from the start of the motion is plotted along the 
axis of abscissas, and the dimensionless quantity ~x = q/R along the axis of ordinates. On 
each of the graphs the q: axis is displaced to the point corresponding to the instant the 
cylinder passed over the transducer. The arrows indicate the points on the �9 axis corre- 
sponding to the instant the cylinder was stopped. 

Figure 1 shows that the velocity of the leading edge of the level-lowering wave moving 
in front of the cylinder is higher than the phase velocity of the main wave train, which is 
the same as the velocity of the cylinder for uniform motion. Up to the time it reaches the 
transducer, the level-lowering wave is rather strongly split, and two vibrational modes, 
which we call long-wave and short-wave, are clearly traced. 

We separated the modes mentioned by performing a spectral analysis of the transducer 
signal. As an example, Fig. 2 shows the modulus of the discrete complex spectrum of the sig- 
nal F(~) corresponding to the solid curve in Fig. la. The quantity ~ plotted on the axis of 
abscissas is the circular frequency of the vibrations; the scale along the axis of ordinates 
is in relative units. The low and high frequencies were separated from the total signal by 
using filters whose amp!itude--frequency characteristics are shown in Fig. 2 by the lines A~ 
and A2. 

The long-wave and short-wave modes were found by taking the inverse Fourier transform 
of the filtered signals. For the example considered here, the long-wave modes are shown by 
the dashed lines in Fig. la, and the short-wave modes by the dashed lines in Fig. 3 (note 
the different scales on the T axis in Figs. 1 and 3). The solid lines in Fig. 3 represent 
the results of calculations based on the linear theory presented above. The integration in 
(2) was performed numerically. It is of interest to note that for the values of the layer 
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thicknesses HI and H2 used here there is practically no difference between solutions (2) and 
(3), so that the layers can be considered infinitely deep. 

A comparison of the calculated and experimental data shows that the linear theory de- 
scribes only the short-wave mode. There is good agreement between the phase pattern of the 
vibrations, but a certain difference in amplitude. 

The difference between the calculated and experimental data due to viscosity manifests 
itself in various ways. First of all, the viscosity affects the pattern of flow around the 
body, and leads to the formation of a boundary layer and a wake. For steady motion an im- 
pulsive force equal to the resistance of the body acts on the liquid. For unsteady motion 
an intense initial vorticity is also introduced into the flow. Since the theory of potential 
flow around a body does not include these effects, there is a difference between the calcu- 
lated and experimental data for the long-wave mode and the initial amplitude of the short- 
wave mode. 

Another effect of viscosity which manifests itself in the damping of internal waves can 
be taken into account within the framework of the linear theory (at least in a qualitative 
way) by retaining the term with the viscosity in the initial equations. The corresponding 
calculations and their experimental verification were performed in [4]. It was found that 
the damping is exponential, so that this effect of viscosity can be taken into account by 
multiplying the value of n in the steady case by exp(--klx), where the damping constant kl de- 
pends on ~g/[(2 + ~)U~] and ~,2, But not on h and the shape of the body. 

Generalizing this:result,~we propose the following semiempirical method for taking ac- 
count of the effect of viscosity not only on the damping of waves, but also on the initial 
disturbance: The value of N found by linear wave theory in an ideal liquid must be multi- 
plied by al exp (--k:x), where a~ depends also on the shape of the body. The parameters a~ 
and kl are best found from experiment. For the graphs in Fig. 3 good agreement with the ex- 
perimental data is achieved for al/R = 2 and k~R = 5.10 -3 . For waves generated by the motion 
of a streamlined wing, a~/R is much closer to unity, i.e., there is better agreement with the 
linear theory [3]. Thus, in the unsteady case only the short-wave mode can be corrected in 

this way. 

The effect of viscosity is also related to the appearance of drift flows, a certain 
curving of the interface, partially compensating the resistance, and other effects which 
are less important those those considered above. These can also explain a certain increase 
of the amplitude of the short-wave mode at large T in Fig. 3b. 

In conclusion, we consider the question of whether it is impossible to replace the 
actual law of motion of the cylinder (5) by the step function 

U (t)={~ ~ ~r~r O~t~T,t>T. 

This question was analyzed by comparing the results of calculations with Eqs. (2) and (4). 
It was found that for the above values of the parameters tl and t2 this replacement leads only 
to the displacement of the wave train as a whole along the z axis by a constant amount close 
to tIUo/R. 
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DIFFUSION OF A SPARINGLY SOLUBLE GAS IN A FLOWING LIQUID FILM 

P. I. Geshev and A. M. Lapin UDC 66.071.7:532.59 

A film of liquid flowing over an inclined surface is almost always covered by waves, 
which have a substantial effect on the transfer between phases. The effect of the waves is 
most pronounced when a sparingly soluble gas is taken up by the film. The increase in the 
mass-transfer coefficient caused by the waves can be 100% or more [I, 2]. 

Several factors have been described as responsible for increasing the mass transfer in 
waves: increase in the overall phase interface area due to the waves (not more than 1% [I]), 
destruction of the inert gas layer hindering absorption by the waves (although this does not 
hinder desorption [i]), vortex motion in the gas and liquid phases [2], the presence of vigor- 
ous convective flows [3, 4], and complete mixing in the wave depressions [5]. 

The main resistance to diffusion is localized in the liquid if the gas is sparingly sol- 
uble, so diffusion in the gas can be neglected. No vortex motion has been observed up to 
Reynolds numbers of Re = 200-400 in various experiments on visualizing the flow in films [6, 
7], so the intensification is due purely to the wave mechanism [I]. 

Here we used the thin boundary-layer approximation near the free surface to obtain an 
exact solution for the diffusion in such a film. It is shown that the main factors that in- 
crease the mass transfer for two-dimensional waves are firstly that the surface velocity of 
the liquid at the wave crests approximates to the phase velocity, which leads to the inter- 
esting phenomenon of diffusion independence in the cells of liquid separated by the ridges, 
and, secondly, the vigorous transverse velocity fluctuations. 

Hydrodynamics of a Wave Film. When there are fluctuations in flow rate, one gets two- 
dimensional waves [I, 8]. The experiments of [i, 8] imply that the wavelength greatly ex- 
ceeds the average film thickness over a large range in flow rate. The longitudinal-velocity 
profile is closely approximated by a polynomial of second degree [6]: 

u(x,y, t )  _ 3 V ( x , t ) [ 2  u { ~/ ~2] - ~ h ( x , t )  ~ h ( x , t ) ]  ] ,  (1) 

where V is the film velocity averaged over the cross section; y, normal coordinate reckoned 
from the wall to the free surface; x, longitudinal coordinate; t, time; and h, instantaneous 
film thickness. 

We take the waves as stationary [i.e., h = h(x -- ct), where c is the phase velocity] 
which gives us hV = hc + const from the condition for constancy of the flow rate in the wave 
system [9]. We average this over the wavelength to determine the constant as q -- <h>c, where 
q is the average flow rate in the laboratory coordinate system and <h> is the average film 
thickness. We get for the velocity averaged over the cross section that 
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